Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation.
نویسندگان
چکیده
Selective agonists of beta(3)-adrenergic receptors (Adrb3) exhibit potent anti-diabetes properties in rodent models when given chronically, yet the mechanisms involved are poorly understood. A salient feature of chronic Adrb3 activation is pronounced remodeling of white adipose tissue (WAT), which includes mitochondrial biogenesis and elevation of metabolic rate. To gain insights into potential mechanisms underlying WAT remodeling, the time course of remodeling induced by the Adrb3 agonist CL-316,243 (CL) was analyzed using histological, physiological, and global gene profiling approaches. The results indicate that continuous CL treatment induced a transient proinflammatory response that was followed by cellular proliferation among stromal cells and multilocular adipocytes. CL treatment strongly fragmented the central lipid storage droplet of mature adipocytes and induced mitochondrial biogenesis within these cells. Mitochondrial biogenesis was correlated with the upregulation of genes involved in fatty acid oxidation and mitochondrial electron transport activity. The elevated catabolic activity of WAT was temporally correlated with upregulation of peroxisome proliferator-activated receptor-alpha and its target genes, suggesting involvement of this transcription factor in coordinating the gene program that elevates WAT catabolic activity.
منابع مشابه
White adipose tissue contributes to UCP1-independent thermogenesis.
Beta3-adrenergic receptors (AR) are nearly exclusively expressed in brown and white adipose tissues, and chronic activation of these receptors by selective agonists has profound anti-diabetes and anti-obesity effects. This study examined metabolic responses to acute and chronic beta3-AR activation in wild-type C57Bl/6 mice and congenic mice lacking functional uncoupling protein (UCP)1, the mole...
متن کاملA selective human beta3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys.
Activation of beta3 adrenergic receptors on the surface of adipocytes leads to increases in intracellular cAMP and stimulation of lipolysis. In brown adipose tissue, this serves to up-regulate and activate the mitochondrial uncoupling protein 1, which mediates a proton conductance pathway that uncouples oxidative phosphorylation, leading to a net increase in energy expenditure. While chronic tr...
متن کاملEffect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice.
The antiobesity and antidiabetic effects of the beta3-adrenergic agonists were investigated on nonobese type 2 diabetic MKR mice after injection with a beta3-adrenergic agonist, CL-316243. An intact response to acute CL-316243 treatment was observed in MKR mice. Chronic intraperitoneal CL-316243 treatment of MKR mice reduced blood glucose and serum insulin levels. Hyperinsulinemic euglycemic cl...
متن کاملBeta-3 adrenergic receptor agonists cause an increase in gastrointestinal transit time in wild-type mice, but not in mice lacking the beta-3 adrenergic receptor.
The effects of beta-3 adrenergic receptor (beta3-AR) agonists on gastrointestinal (GI) motility, as reported by stomach retention and intestinal transit of radiolabelled charcoal, were compared in wild-type (WT) mice and in transgenic mice lacking beta3-AR (beta3-AR[KO]) or having beta3-AR in white and brown adipose tissue only (beta3-AR[WAT+BAT]). After s.c. administration of 3 mg/kg of the se...
متن کاملSeeing the trees in the forest: selective electroporation of adipocytes within adipose tissue.
Electroporation has been recently adapted for the transfer of macromolecules into cells of tissues in vivo. Although mature adipocytes constitute <20% of cells residing in adipose tissue, we hypothesized that fat cells might be susceptible to selective electrotransfer of plasmid DNA owing to their large size relative to other cells in the tissue. Results demonstrate the feasibility of electropo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005